
The Equality of Mixed Partials 
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Proof: 

Write p=(x0,y0) and set Δ(h,k) = f(x0+h, y0+k)-f(x0+h, y0)-f(x0, y0+k) +f(x0,y0).   

Set G(x) = f(x, y0+k) - f(x, y0).  Then Δ(h,k)=G(x0+h) - G(x0).  

So Δ(h,k) = hG'(x) for some x between x0 and x0+h since G is differentiable with  
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In particular, 
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