The Equality of Mixed Partials

Theorem: Suppose $f{:}U{\rightarrow}\mathbb{R}$, where U is open in \mathbb{R}^2 , is a function such that :

$$\begin{array}{l} \circ \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \text{ exist everywhere on U} \\ \circ \quad \frac{\partial^2 f}{\partial y \partial x} \text{ exists everywhere on U and is continuous at } p \in \text{U} \\ \circ \quad \frac{\partial^2 f}{\partial x \partial y} \text{ exists everywhere on U} \\ \text{Then } \left. \frac{\partial^2 f}{\partial x \partial y} \right|_p = \frac{\partial^2 f}{\partial y \partial x} \right|_p. \end{array}$$

Proof:

Write $p=(x_0,y_0)$ and set $\Delta(h,k) = f(x_0+h, y_0+k)-f(x_0+h, y_0)-f(x_0, y_0+k) + f(x_0,y_0)$. Set $G(x) = f(x, y_0+k) - f(x, y_0)$. Then $\Delta(h,k)=G(x_0+h) - G(x_0)$.

So $\Delta(h,k) = hG'(x)$ for some x between x_0 and x_0+h since G is differentiable with

$$\begin{aligned} \mathbf{G}'(\mathbf{x}) &= \frac{\partial f}{\partial x} \Big|_{(x, y_0 + k)} - \left| \frac{\partial f}{\partial x} \right|_{(x, y_0)}. \\ \text{Now } \mathbf{G}'(\mathbf{x}) &= k \left| \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \right|_{(x, y)} \text{ for some y between } \mathbf{y}_0 \text{ and } \mathbf{y}_0 + k \text{ since } \frac{\partial f}{\partial x} \text{ is differentiable}. \end{aligned}$$

as a function of **y** , **x** fixed.

Thus
$$\Delta(h,k) = hk \frac{\partial^2 f}{\partial y \partial x}\Big|_{(x,y)}$$
.

In particular,
$$\lim_{(h,k)\to(0,0)} \frac{1}{hk} \Delta(h,k) = \frac{\partial^2 f}{\partial y \partial x} \bigg|_{(x_0,y_0)}$$
 by continuity of $\frac{\partial^2 f}{\partial y \partial x}$ at (x_0,y_0) .
Let $\frac{\partial^2 f}{\partial y \partial x} \bigg|_{(x_0,y_0)} = A$. And, given any $\varepsilon > 0$, choose $\delta \Rightarrow |h| < \delta$, $|k| < \delta \Rightarrow$
 $\bigg| \frac{1}{hk} \Delta(h,k) - A \bigg| < \varepsilon$.
Now $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \bigg|_{(x_0,y_0)} - A = \lim_{h\to 0} \frac{1}{h} \bigg(\lim_{k\to 0} \frac{1}{k} (\Delta(h,k) - Ahk) \bigg) \bigg)$ by definition of
partial derivatives. But $\lim_{k\to 0} \bigg| \frac{1}{k} (\Delta(h,k) - Ahk) \bigg| \le \varepsilon |h|$ if $|h| < \delta$. So
 $\bigg| \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \bigg|_{(x_0,y_0)} - A \bigg| \le \lim_{h\to 0} \frac{1}{|h|} \varepsilon |h| = \varepsilon$. Since this holds for all $\varepsilon > 0$,
 $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \bigg|_{(x_0,y_0)} = A = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \bigg|_{(x_0,y_0)} \Box$