The Equality of Mixed Partials

Theorem: Suppose :U—R , where U is open in R? , is a function such that :
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Proof:

Write p=(x,,y,) and set A(hk) = f(x,+h, yy+k)-f(xo+h, yo)-f(xg, yot+k) +£(x,¥0)-

Set G(x) = f(x, yo+k) - f(x, yg). Then A(hk)=G(x,+h) - G(x)-

So A(h,k) = hG'(x) for some x between x, and x,+h since G is differentiable with
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Now G'(x)=K i (ﬂ)
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as a function of y , x fixed.
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Thus A(h,K) = hk 2
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for some y between y, and y,+k since a—is differentiable
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Now g(ﬂ) - A= |Im£(|ImE(A(h, k) — Ahk)) by definition of
OX 6y Oovo) h—0 h \ k=0 k

partial derivatives. But LIH;)]‘%(A(h,k) — Ahk)( < glhl i |h|<8. So

i(ﬂ) — A< |Imi8|h| = & . Since this holds for all £>0,
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